skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tabor, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Miocene Climatic Optimum (MCO; ~17–14 Ma) is one of Earth’s most recent protracted warming events and serves as an analog to anthropogenic climate change. Constraining the land surface response to the MCO is critical for paleoclimate model validation and for predictions of future climatic response. However, nonmarine records across the MCO interval are limited. The hinterland and foreland basins of the southern Central Andes in Argentina preserve stratigraphic records across the MCO. These continental deposits record the onset of dune fields at >30 Ma to ~19 Ma, with widespread eolian deposition at ~22–17 Ma. We document a regional change from eolian dune fields to fluvial and lacustrine conditions at ~18–15 Ma, broadly coincident with the MCO, over ~1000 km along-strike, in localities that would have occupied both high and low elevation positions and from different tectono-morphic settings. These paleoenvironmental changes are corroborated by new climate model simulations which show increased seasonality and precipitation along the eastern flank of the southern Central Andes during the MCO. Our results support a shift from arid to more humid and seasonal conditions during the MCO in the southern Central Andes, likely driven by intensification of the South American monsoon 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. This archived Paleoclimatology Study is available from the NOAA National Centers for Environmental Information (NCEI), under the World Data Service (WDS) for Paleoclimatology. The associated NCEI study type is Cave. The data include parameters of speleothems with a geographic location of Mexico. The time period coverage is from 62500 to 5858 in calendar years before present (BP). See metadata information for parameter and study location details. Please cite this study when using the data. 
    more » « less
  3. Abstract Explosive volcanic eruptions are one of the largest natural climate perturbations, but few observational constraints exist on either the climate responses to eruptions or the properties (size, hemispheric aerosol distribution, etc.) of the eruptions themselves. Paleoclimate records are thus important sources of information on past eruptions, often through the measurement of oxygen isotopic ratios (δ18O) in natural archives. However, since many processes affectδ18O, the dynamical interpretation of these records can be quite complex. Here we present results from new, isotope‐enabled members of the Community Earth System Model Last Millennium Ensemble, documenting eruption‐inducedδ18O variations throughout the climate system. Eruptions create significant perturbations in theδ18O of precipitation and soil moisture in central/eastern North America, via excitation of the Atlantic Multidecadal Oscillation. Monsoon Asia and Australia also exhibit strong precipitation and soilδ18O anomalies; in these cases,δ18O may reflect changes to El Niño‐Southern Oscillation phase following eruptions. Salinity and seawaterδ18O patterns demonstrate the importance of both local hydrologic shifts and the phasing of the El Niño‐Southern Oscillation response, both along the equator and in the subtropics. In all cases, the responses are highly sensitive to eruption latitude, which points to the utility of isotopic records in constraining aerosol distribution patterns associated with past eruptions. This is most effective using precipitationδ18O; all Southern eruptions and the majority (66%) of Northern eruptions can be correctly identified. This work thus serves as a starting point for new, quantitative uses of isotopic records for understanding volcanic impacts on climate. 
    more » « less
  4. Abstract Because of the pervasive role of water in the Earth system, the relative abundances of stable isotopologues of water are valuable for understanding atmospheric, oceanic, and biospheric processes, and for interpreting paleoclimate proxy reconstructions. Isotopologues are transported by both large‐scale and turbulent flows, and the ratio of heavy to light isotopologues changes due to fractionation that can accompany condensation and evaporation processes. Correctly predicting the isotopic distributions requires resolving the relationships between large‐scale ocean and atmospheric circulation and smaller‐scale hydrological processes, which can be accomplished within a coupled climate modeling framework. Here we present the water isotope‐enabled version of the Community Earth System Model version 1 (iCESM1), which simulates global variations in water isotopic ratios in the atmosphere, land, ocean, and sea ice. In a transient Last Millennium simulation covering the 850–2005 period, iCESM1 correctly captures the late‐twentieth‐century structure of δ18O and δD over the global oceans, with more limited accuracy over land. The relationship between salinity and seawater δ18O is also well represented over the observational period, including interbasin variations. We illustrate the utility of coupled, isotope‐enabled simulations using both Last Millennium simulations and freshwater hosing experiments with iCESM1. Closing the isotopic mass balance between all components of the coupled model provides new confidence in the underlying depiction of the water cycle in CESM, while also highlighting areas where the underlying hydrologic balance can be improved. The iCESM1 is poised to be a vital community resource for ongoing model development with both modern and paleoclimate applications. 
    more » « less